STUDY PROTOCOL

Open Access

Get strong to fight childhood cancer - an exercise intervention for children and adolescents undergoing anti-cancer treatment (FORTEe): Rationale and design of a randomized controlled exercise trial

Marie Astrid Neu^{1*}, Elias Dreismickenbecker¹, Francesca Lanfranconi², Sandra Stössel¹, Adriana Balduzzi^{2,3}, Peter Wright⁴, Stan Windsor⁴, Joachim Wiskemann⁵, Inaam El-Rajab⁵, Alejandro Lucia⁶, Carmen Fiuza-Luces⁷, Rodolf Mongondry⁸, Martin Kaj Fridh⁹, Filippo Spreafico¹⁰, Barbara Konda¹¹, Lidija Kitanovski¹², Barbara Heißerer¹³, Marco Polak¹⁴, Tobias Baader¹⁵, Wilhelm Bloch¹⁶, Miriam Götte¹⁷, on behalf of Network ActiveOncoKids, Katie Rizvi¹⁸, on behalf of Youth Cancer Europe, Christian Ruckes¹⁹, Norbert W. Paul²⁰, Joerg Faber¹ and on behalf of the FORTEe Consortium

Abstract

Background Despite substantial advances in treatment, children and adolescents with cancer continue to face high morbidity and health issues, including cancer-related fatigue, treatment-related complications, and physical inactivity. Integrating exercise into pediatric oncology care has emerged as a promising approach to mitigate these burdens during cancer treatment. While preliminary data support its potential to reduce treatment-related side effects and enhance quality of life, robust evidence -especially from large, multicenter trials- remains limited.

Methods The FORTEe trial is a randomized, controlled, multicenter trial evaluating a personalized and standardized exercise intervention powered to include 450 children, adolescents, and young adults undergoing cancer treatment across ten centers in Europe. The trial aims to provide high-quality evidence for integrating precision exercise therapy as part of standard care. Participants are randomly assigned to either the exercise intervention group, receiving a tailored, supervised 8–10 weeks lasting exercise program, or the control group, receiving usual care. The exercise program includes endurance, strength, flexibility, and balance training, adapted to each patient's age, fitness, and cancer treatment phase. Exercise sessions are intended to take place 3–5 times a week with moderate intensity, with both frequency and intensity adapted to the clinical condition of the individual. Digital tools and telehealth solutions support the intervention, allowing for both in-person and remote training.

*Correspondence: Marie Astrid Neu marie.neu@unimedizin-mainz.de

Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Neu et al. BMC Cancer (2025) 25:1275 Page 2 of 12

Discussion With a target enrolment of 450 patients, the FORTEe trial will be one of the largest interventional studies in pediatric exercise oncology. Given that childhood cancer is a rare disease, this sample size is only achievable through a multicenter approach. Enhancing statistical power, the large sample will enable more robust analyses of the intervention's effects in a diverse population across multiple European centers.

Conclusion As a progress beyond the current state-of-the-art, FORTEe has the ambition to implement pediatric exercise oncology as an evidence-based treatment option for all childhood cancer patients, ultimately integrating it as a standard into clinical practice worldwide.

Trial registration The FORTEe trial was prospectively registered in the German Clinical Trials Register (DRKS00027978) on 28 January 2022 and on ClinicalTrials.gov (NCT05289739) on 21 March 2022.

Keywords Childhood cancer, Pediatric Oncology, Exercise intervention, Physical activity, Randomized controlled trial, Cancer-related fatigue, Supportive Care, Training

Introduction

Despite substantial advances in treatment, children and adolescents with cancer continue to experience high morbidity and health issues, notably due to treatmentrelated side effects such as physical inactivity and cancerrelated fatigue (CRF). Although childhood cancer is a rare disease, it remains the leading cause of death from non-communicable diseases in European children [1, 2]. Over the past decades, survival rates have substantially improved [3], with more than 80% of childhood cancer patients now surviving beyond five years [4-6]. However, patients and survivors face short- and long-term risks including cardiovascular and metabolic complications, which are often exacerbated by physical inactivity and reduced fitness levels. These factors contribute to diminished health-related quality of life (HRQoL) and increased long-term healthcare needs [7, 8]. During cancer treatment, children with cancer frequently become physically inactive due to disease burden, hospitalization, therapy-induced toxicities, and psychosocial sequelae [9, 10]. In this context, there is growing recognition of the need to optimize supportive care in pediatric oncology. In recent years, the field of exercise oncology has emerged as a promising area, investigating structured exercise as an adjunct to conventional cancer care. In adult cancer, exercise interventions have shown benefits in reducing CRF, enhancing physical fitness and function, improving psychological function as well as improving HRQoL [11]. CRF, a multidimensional syndrome characterized by persistent exhaustion unrelieved by rest, profoundly affects the physical, mental, and social well-being of cancer patients [12]. Despite its substantial impact, the underlying mechanisms of CRF are still not fully understood [13], and treatment approaches continue to evolve [14]. Notably, CRF is increasingly recognized as a prevalent and debilitating side effect in children and adolescents undergoing cancer therapy [15–17].

However, exercise guidelines and evidence generated in adult populations [18] are not directly applicable to children due to physiological, developmental,

and psychosocial differences [19]. Childhood cancer encompasses a heterogeneous spectrum of malignancies and treatment regimens, each requiring individualized approaches to physical activity interventions.

Moreover, clinical research in pediatric oncology faces unique challenges compared to adult settings. The rarity of childhood cancer considerably limits achievable sample sizes in clinical trials, making robust, large-scale studies difficult [20]. Additionally, the treatment of children requires special considerations, as their developing organ systems are more susceptible to treatment-related toxicities [21]. Pediatric trials must also account for familycentered care models, as children depend on caregivers for support during treatment, which can influence adherence and intervention feasibility [22].

Furthermore, ethical and regulatory requirements for research involving minors are particularly stringent due to their vulnerability and ongoing physiological and psychosocial development. These factors necessitate careful adaptation of study designs, risk-benefit assessments, and consent procedures to ensure that trials are both ethical and effective [23]. As a result, pediatric trials must be well-structured and age-appropriate, specifically tailored to the unique needs of pediatric oncology patients while ensuring both safety and efficacy when evaluating exercise interventions.

Emerging evidence supports the feasibility, safety, and potential benefits of exercise interventions in children with cancer [24–35], as demonstrated by monocentric randomized controlled trials (RCTs) such as the MUCKI [36] and PAPEC trials [26]. Nonetheless, high-quality, large-scale data remain scarce, and standardized exercise programs are not yet routinely integrated into pediatric oncology care. Addressing this gap requires robust, multicenter randomized controlled trials that evaluate both efficacy and implementation strategies [37–39].

The FORTEe trial is a multinational RCT designed to assess the effects of a precision-based exercise intervention on CRF in children and adolescents undergoing Neu et al. BMC Cancer (2025) 25:1275 Page 3 of 12

cancer treatment. The primary objective is to determine whether structured exercise training can reduce CRF, measured by the Pediatric Quality of Life Inventory™ (PedsQL™) Multidimensional Fatigue Scale [40]. Secondary objectives include evaluating the impact on HRQoL, mental health, resilience, physical fitness, body composition and biomarkers. We hypothesize that the FORTEe intervention will reduce CRF and improve a range of physical and psychosocial outcomes, supporting the integration of personalized exercise therapy into standard pediatric oncology care.

Materials and methods

Overview of study design

The FORTEe trial is a multi-center RCT within the Horizon 2020 funded FORTEe research project "Get strong to fight childhood cancer— An exercise intervention for children and adolescents undergoing anti-cancer treatment". Ten recruitment centers are based in seven European countries: Germany, Italy, Spain, France, United Kingdom, Denmark and Slovenia (see Table 1). The study design builds on insights from the monocentric RCT MUCKI [36].

Participants of the FORTEe trial are randomly assigned to either the experimental group (exercise group), receiving a precision exercise therapy intervention, or the control group, receiving usual care. The exercise intervention lasts for 8 to 10 weeks, depending on the cancer treatment course. Key assessment points include T0 (pre-test), T1 (post-test) and three follow-ups (T2-T4, see Fig. 1). The pre- and post-test are scheduled in a standardized way, i.e., usually before the start of a new treatment cycle or at the time of best possible hematologic recovery and in as "fit" a condition as possible. After the intervention, all participants may join an optional exercise program at their recruitment center. Blinding is not feasible due to the nature of the intervention.

The FORTEe trial was prospectively registered in the German Clinical Trials Register (DRKS00027978) on 28 January 2022 and on ClinicalTrials.gov (NCT05289739) on 21 March 2022.

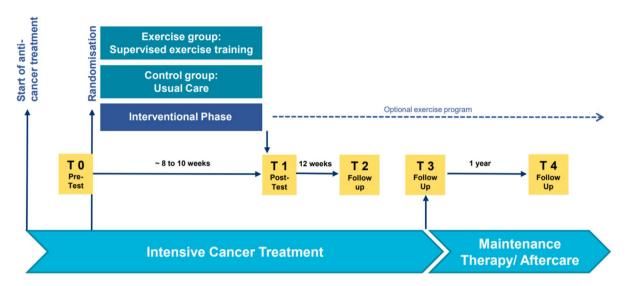

The trial protocol was developed in accordance with the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) 2013 guidelines [41]. The completed SPIRIT checklist is provided in an additional

Table 1 Overview of participating institutions, including location details and assigned acronyms

Participant name	City	Country	Acronym
University Medical Center of the Johannes Gutenberg-University Mainz	Mainz	Germany	UMC-Mainz
Childhood Cancer Center Mainz			
Heidelberg University Hospital and NCT Heidelberg (a partnership between DKFZ and University	Heidelberg	Germany	UKHD
Medical Center Heidelberg)			
Hopp Children's Cancer Center (KiTZ)			
Department of Pediatric Oncology, Hematology and Immunology,			
Heidelberg University Hospital Centre de Lutte Contre le Cancer Leon Berard	Lucan	Гионово	CLD
Pediatric Hematology and Oncology Institute (IHOPe) jointly with the Lyon Hospices Civils	Lyon	France	CLB
Oxford Brookes University in collaboration with Oxford University Hospitals NHS Foundation Trust	Oxford	United	OBU
John Radcliffe Hospital, Oxford	Oxioid	Kingdom	ОВО
Churchill Hospital, Oxford		rangaam	
Fondazione Monza e Brianza per Il Bambino e La Sua Mamma	Monza	Italy	MBBM
Pediatric Department, Fondazione IRCCS San Gerardo dei Tintori Centro Maria Letizia Verga		,	
Haemato-Oncology Unit and the Transplant Centre			
Region Hovedstaden	Copenhagen	Denmark	RegionH
University Hospital Copenhagen			
Rigshospitalet			
Department of Pediatrics and Adolescent Medicine			
Universidad Europea de Madrid in cooperation with:	Madrid	Spain	UEM
Hospital Infantil Universitario Niño Jesús, Madrid			
Hospital Universitario 12 de Octubre, Madrid Fondazione IRCCS Istituto Nazionale dei Tumori	Milan	land.	INT
Pediatric Oncology Unit	Millari	Italy	IINI
University Medical Center Liubliana	Ljubljana	Slovenia	UKCI
Department of Haematology and Oncology in Cooperation with Forma 3D Ltd., Ljubljana	Ljubijaria	Sioverila	Forma 3D
University Hospital Essen	Essen	Germany	UKESSEN
West German Cancer Center	L33CII	Germany	ONESSEN
Clinic for Pediatrics III, Hematology and Oncology			
German Sport University Cologne ^a	Cologne	Germany	DSHS Koeln

ano recruiting site, scientific partner in the trial (biomarker project)

Neu et al. BMC Cancer (2025) 25:1275 Page 4 of 12

Fig. 1 Study design of the randomized controlled FORTEe trial. The FORTEe trial evaluates the effects of a supervised exercise intervention in childhood cancer patients undergoing intensive treatment. After baseline assessments at T0 (pre-test), participants are randomized to either the exercise group (receiving supervised exercise training) or the control group (receiving usual care). The interventional phase lasts approximately 8–10 weeks and concludes with T1 (post-test). This is followed by three follow-up assessments: T2 (12 weeks after T1), T3 (at the end of intensive cancer treatment), and T4 (12 months after T3). If there are less than four weeks inbetween T2 and T3, only T2 will take place. In patients receiving allogeneic stem cell transplantation, T3 is scheduled six months post-transplant (day 0). After the interventional phase, participants may voluntarily continue with an optional, unsupervised exercise program during maintenance therapy or aftercare.

file (see Additional file 1). The schedule of enrollment, interventions, and assessments is outlined in the SPIRIT Figure (see Additional file 2).

Ethical and safety considerations

The FORTEe study protocol and associated documents were approved by the Ethics Committee of the Rhineland-Palatinate Chamber of Physicians, the consortium's lead ethics committee, on 4th August 2021 (application number 2021-15904), followed by approvals from local ethics committees and regulatory authorities at each recruitment center in accordance with national and/ or local requirements. The relevant ethics committees and regulatory authorities as well as trial registries will be notified of any changes or amendments to the protocol. All trial staff adhere to Good Clinical Practice, the Declaration of Helsinki, and the European General Data Protection Regulation (GDPR). A comprehensive Data Protection Concept has been developed, particularly concerning the use of digital tools during the trial. For minors, written informed consent from a legal guardian is required. Participants aged 16 and older must provide their own written consent, while children aged six and above are asked to provide documented assent where possible. Separate consent was obtained for ancillary studies, including biomarker and site-specific subprojects involving additional data or blood collection. Patients will be enrolled in the study only after providing written informed consent, following a minimum reflection period of 24 h. Consent may be withdrawn at any time without consequences.

To minimize the risk of Serious Exercise-Related health Complications (SERCs), all sessions are prepared and supervised by qualified exercise professionals, considering each participant's daily clinical condition. Medical clearance is obtained before each session to ensure participant safety. The detailed recommendations for medical clearance and criteria for adapting exercise are provided in an additional file (see Additional file 3). SERCs are reported via specific electronic case report form including information such as date/onset, grade, case description, relation to exercising, potential SERC treatment/actions taken and outcome. An additional file shows the SERC code groups, SERC codes and SERC grades used in FORTEe (see Additional file 4). An evaluation on causality and expectedness will be performed for each documented SERC.

Eligibility, recruitment and stratified randomization

Eligible participants are children, adolescents and young adults aged 4 to 21 years diagnosed with cancer and undergoing chemotherapy and/or radiotherapy. At each recruiting center, all newly diagnosed patients are screened for eligibility by study staff and informed about the FORTEe trial as early as possible following diagnosis. Recruitment was planned to occur during the initial phase of cancer treatment—when patients typically receive more intensive, predominantly intravenous, chemotherapy and/or radiotherapy. Prior to the start

Neu et al. BMC Cancer (2025) 25:1275 Page 5 of 12

of patient enrolment, all staff involved at the recruiting sites received standardized training provided by the coordinating team. Participant recruitment was conducted between April 2022 and October 2024. In addition to the primary eligibility criteria, patients must meet further inclusion criteria: suitability as determined by the treating team, availability of written informed consent (and documented assent for children when appropriate), sufficient proficiency in the national language or English, and not being in the terminal phase of the disease. Exclusion criteria are provided in an additional file (see Additional file 5).

Following enrolment and completion of the baseline pre-test (T0), a centralized, computerized, stratified randomization allocates participants in a 1:1 ratio to the exercise or control group. Stratification is based on four criteria: i) the clinical recruiting center, ii) the category of childhood cancer diagnosis (classified according to the International Classification of Childhood Cancer, third edition [42], as blood cancer, malignant bone tumor, central nervous sytem (CNS) and intraspinal tumors, or Others), iii) the (intended) treatment intensity [43], and iv) the participant's physical performance at the pre-test (measured using the Lansky/Karnofsky score). The online MARVIN database facilitates both the initiation of the randomization process and the display of the allocation results to authorized personnel at the recruitment site.

MARVIN, a validated Electronic Data Capture platform developed by XClinical, is utilized for data collection and management in this study. The database is customized for the specific needs of the trial and hosted by the Central Data Management (Zentrales Datenmanagement, ZDM) of the Society for Paediatric Oncology and Haematology (GPOH), based at Hannover Medical School (Medizinische Hochschule Hannover).

A CONSORT (Consolidated Standards of Reporting Trials) flowchart is used to summarize the eligibility and enrolment process [44].

Intervention

Participants randomized to the exercise group will receive a supervised precision exercise training for 8 to 10 weeks during intensive cancer treatment (see Fig. 1). The intervention is continued until the post-test is completed (e.g., 12 weeks). For participants in the intervention group, exercise should be offered as frequently as possible throughout the intervention phase, ideally on a daily basis. In accordance with current literature-based recommendations, the intervention aims to deliver 3 to 5 exercise sessions per week, each lasting between 45 to 60 min. The specific duration of sessions may vary within this range, taking into account individual tolerance and clinical circumstances. The content, intensity, and duration of each session will be tailored to the patient's

functional capacity, age, fitness level, and overall health status. This individualized approach ensures that the exercise program remains safe, feasible, and beneficial across a wide range of physical abilities and treatment stages.

The program primarily consists of age-appropriate, moderate-intensity endurance, strength, flexibility, coordination/balance and gait training. Additionally, playful games are integrated into the sessions to increase motivation and enhance adherence, particularly among younger children.

Training is conducted in diverse settings, including inpatient and outpatient clinics as well as patients' homes during outpatient stays. In inpatient settings, exercise sessions are directly supervised by qualified exercise professionals. During outpatient periods—and on occasions such as weekends during inpatient stays—, participants (if applicable, supported by their parents) exercise independently according to the recommendations of the exercise professional, and/or, depending on each recruiting center's infrastructure with support via digital tools (e.g. augmented reality (AR) app). In addition, remote outpatient exercise training is offered using telehealth solutions supervised by FORTEe exercise professionals.

For each exercise session, both the total minutes of exercising and the time spent per exercise category (endurance, upper body strength, lower body strength, flexibility, coordination/balance, and gait) are documented. Exercise intensity is classified as moderate-tovigorous if at least two of the following three criteria are met; otherwise, it is classified as light: i) therapist-rated intensity based on breathing rate, sweating, other signs of exertion; ii) rating of perceived exertion on the Borg 6–20 scale ≥ 12 [45]; iii) for endurance exercises: heart rate ≥ 65% of the maximum heart rate, determined either via cardiopulmonary exercise testing (CPET) or estimated using the formula HFmax = $208 - 0.7 \times age$ [46]; for strength exercises: 1-3 repetitions performed with correct technique at a predetermined maximum repetition load [47].

In cases where a training session is terminated or cancelled, the event and the underlying reasons are documented.

The control group in this trial will not receive supervised exercise sessions during the intervention period but will continue to receive usual care, including supportive therapies as defined by site-specific standards. An additional file shows an overview about the supportive care services across the FORTEe trial sites (see Additional file 6). This design allows for a pragmatic comparison between standard care and the additional benefit of a structured, supervised exercise intervention.

The decision to use usual care as a comparator reflects both ethical and practical considerations. Given the Neu et al. BMC Cancer (2025) 25:1275 Page 6 of 12

growing but still limited integration of exercise therapy into pediatric oncology practice, usual care remains the current standard in many settings. This comparison enables evaluation of the additive effects of supervised exercise on outcomes such as physical functioning, psychosocial well-being, and treatment tolerance.

To account for unsupervised exercising, both groups are provided with an exercise diary to record frequency, type, and intensity of any voluntary exercise, as well as general physical activity in daily life. This ensures transparency regarding background activity levels and enables more accurate interpretation of the intervention's impact.

Outcome measures & participant timeline

The primary outcome of the FORTEe trial is CRF, measured using the PedsQL $^{\text{\tiny MS}}$ 3.0 Multidimensional Fatigue Scale [40, 48]. This validated questionnaire is available in age-specific versions and is completed by the participant and/or by proxy through parents or guardians. Secondary outcomes are detailed in Table 2.

In addition to questionnaire- and exercise-based outcomes, blood samples will be collected from participants aged four years and older with solid tumors (excluding leukemia and lymphoma) at three recruiting centers (UMC-Mainz, UEM, INT) for biomarker analysis. The samples will be analyzed for immunological and epigenetic parameters by UEM and DSHS Koeln.

Outcome comparisons will primarily focus on the pretest (T0) versus post-test (T1) assessments, with additional analyses conducted at subsequent follow-up time points.

A detailed overview on outcome measures and study time points is provided in Fig. 1 and in the SPIRIT Figure (see Additional file 2).

Technology

The FORTEe trial integrates a range of technological tools to enhance the intervention, particularly for the exercise group. As part of the FORTEe project, the "FORTEe— Get strong" mobile app has been developed to provide educational and exercise- and health-related content along with a comprehensive exercise catalogue.

To further support exercise training, a novel AR application, the FORTEe AR app, has been developed. It enables participants to perform exercise sessions with an animated avatar. The FORTEe AR app is used both for home-based training and to enhance in-hospital exercise sessions at selected study sites (UMC-Mainz, UKHD, MBBM, and INT).

In addition, at specific study sites (UMC-Mainz, UKHD, MBBM, and INT), an interactive 2D screen (the Pixformance station) may be employed during

in-hospital sessions. This system features an integrated camera that analyzes body segments in real time and provides immediate feedback on exercise execution and movement quality.

Furthermore, telehealth-supervised sessions are conducted to further support participants during their home-based training.

Data management and monitoring

Within the FORTE trial, every precaution is taken to protect the privacy of research subjects and the confidentiality of their personal information and data. Principles for the protection of the participants' personal data is described in more detail in the FORTEe Data Protection Concept. Data Protection obligations and responsibilities within the FORTEe Consortium are defined in a Joint Controllership Agreement (Article 26 GDPR). Furthermore, Data Processing Agreements (Article 28 GDPR) with data-processing parties have been concluded. A data protection impact assessment (art. 35 GDPR) was performed prior to the start of the clinical trial. In order to guarantee appropriate handling of the collected data, a detailed data management plan (DMP) was developed prior to the start of the clinical trial.

Clinical and study data, including records of any (serious) exercise-related health complications, will be collected via electronic case report forms and stored in the online MARVIN database. Data Traceability is ensured by an integrated audit trail. The database complies with all relevant laws and regulations, including Good Clinical Practice and the European General Data Protection Regulation (EU) 2016/679. MARVIN supports data import and export functionalities and employs state-of-the-art security measures to protect both study data and participants' personal data. Data management in FORTEe will adhere to the FAIR principles, ensuring that all data are Findable, Accessible, Interoperable, and Reusable. To facilitate knowledge exchange with the scientific community, relevant data will be deposited in public repositories and made publicly available following an embargo period.

To ensure data security in FORTEe, a Data and Safety Monitoring Committee (DSMC) has been established. It comprises the trial statistician and three experts in data and study management. The DSMC reviews serious exercise related events, assesses potential statistical issues—such as selection bias, adherence concerns, or failure to follow up—and advises the Steering Committee (SC) and trial leadership on critical safety matters.

To ensure the proper execution of exercise testing, the exercise intervention, and documentation in accordance with the study protocol, monitoring visits are conducted at defined intervals by designated study personnel.

Neu et al. BMC Cancer (2025) 25:1275 Page 7 of 12

Table 2 Overview of primary and secondary outcomes, associated measurement tools and data collection sites

Outcome		Measured by	Data collection site
		Primary outcomes	
Psychosocial out	comes		
Cancer-related f	atigue	Pediatric Quality of Life Inventory™ (PedsQL™) 3.0 Multidimensional Fatigue Scale [40]	All Sites
		Secondary outcomes	
Psychosocial out	romes	Secondary duccomes	
Health-related quality of life		PedsQL™ 4.0 Generic Core Scales questionnaire [49],	All sites
		PedsQL™ 3.0 Cancer Module [40]	All sites
Resilience		Mainzer Resilience Scale for childhood cancer (MRScc) [©]	All sites
.comerree		Brief Resilience Scale (BRS) [50],	All sites
		Child & Youth Resilience Measure-Revised (CYRM-R) [51]	All sites
Self-efficacy		General self-efficacy scale (GSE) [52]	All sites
en enrede)		Physical exercise self-efficacy scale (PESE) [53]	All sites
Mental health		WHO (Five) Well-Being Index [54]	All sites
remain realiti		Warwick-Edinburgh Mental Well-being Scale (WEMWBS) © [55]	All sites
Physical activity level and behavior		Modified Recent/Youth/Children's Physical Activity Questionnaire (mRPAQ/mYPAQ/mCPAQ), adapted from the Recent Physical Activity Questionnaire (RPAQ) [56]	All sites
		Half-structured interview on physical activity and behavior	All sites
Vorcico con act	, outcomes	()	
xercise capacity Notor function	outcornes	Quick Motor Function Test	All sites
	Leg Strength	Handheld dynamometer	All sites
trength	Leg stierigtii	Sit to stand test	All sites
		Leg extension machine	MBBM, UEM
	Arm strength	Handheld dynamometer	All sites
	Annstrength	Biceps curls (5 RM)	All sites
		Medicine ball shot	All sites
ndurance	Functional	Six Minute Walk Test (6MWT)	All Sites
ridularice	Capacity		
	Cardiorespira- tory Fitness	CPET using a cycling ergometer	UMC-Mainz, MBBM, UEM, INT, RegionH
	Cardiorespira-	CPET using the YoYo-Test [57]	MBBM
	tory Fitness	6-min cycling test (6MCT)	UMC-Mainz
	Muscle Oxygenation	Near infrared spectroscopy (NIRS)	MBBM
Flexibility		Sit and Reach Test	All Sites
		Goniometry	All Sites
unctional Mob	ility	Timed Up and Down Stairs Test (TUDS)	All Sites
ody compositio	n		
ody		Waist-to-Hip Ratio	All Sites
composition		Bioelectrical impedance analysis (BIA)	All Sites
		Dual energy X-ray absorptiometry (DEXA)	UEM, INT, RegionH
	Skinfold Thickness	Plicometry	All Sites
afety outcomes			
erious		Type and number of SERC	All sites
exercise-related nealth compli- cations (SERC)		X	

Abbreviations: PedsQL™ Pediatric Quality of Life Inventory™, mRPAQ Modified Recent Physical Activity Questionnaire, mYPAQ Modified Youth Physical Activity Questionnaire, mCPAQ Modified Children's Physical Activity Questionnaire, mRScc Mainzer Resilience Scale for Childhood Cancer, BRS Brief Resilience Scale, CYRM-R Child & Youth Resilience Measure-Revised, GSE General Self-Efficacy Scale, PESE Physical Exercise Self-Efficacy Scale, WHO-5 World Health Organization (Five) Well-Being Index, WEMWBS Warwick-Edinburgh Mental Well-Being Scale, RPAQ Recent Physical Activity Questionnaire, 6MWT Six Minute Walk Test, CPET Cardiopulmonary Exercise Testing, NIRS Near Infrared Spectroscopy, TUDS Timed Up and Down Stairs Test, BIA Bioelectrical Impedance Analysis, DEXA Dual Energy X-ray Absorptiometry

Abbreviations (Data Collection Sites): INT Fondazione IRCCS Istituto Nazionale dei Tumori, MBBM Fondazione Monza e Brianza per II Bambino e La Sua Mamma, RegionH Region Hovedstaden, UEM Universidad Europea de Madrid, UMC-Mainz University Medical Center of the Johannes Gutenberg-University Mainz.

Neu et al. BMC Cancer (2025) 25:1275 Page 8 of 12

Sample size

The study is powered for comparisons within each of three strata: leukemia/lymphoma, CNS tumors, and other tumors. Based on the pilot MUCKI trial [36] at the coordinating center, the expected distribution is 45% of patients in the leukemia/lymphoma stratum, 25% in the CNS tumor stratum, and 30% in the other tumors stratum. At the time of sample size calculation, the study was designed with these three strata based on cancer diagnosis. For the purposes of randomization, an additional stratum specifically for malignant bone tumors was later introduced, increasing the total number of strata for randomization to four. This change was implemented during the preparation of the final study protocol in consent with the DSMC. Importantly, this modification does not affect the original sample size calculation or the statistical power, which remains based on the three strata originally considered.

Each stratum's comparison between the active intervention and the corresponding control group is weighted equally, with a two-sided significance level of 1.67% applied for each comparison. With 360 evaluable patients, the anticipated statistical power is 92% for the leukemia/lymphoma stratum ($2 \times 81 = 162$ patients), 66% for the CNS tumor stratum ($2 \times 45 = 90$ patients), and 82% for the other tumors stratum ($2 \times 63 = 126$ patients). Accounting for an estimated 20% dropout rate, a total of 450 patients will be randomized.

Statistical analysis

Statistical methods are defined within the trial's statistical analysis plan. The primary endpoint is the change in CRF from baseline to T1, assessed using the PedsQL™ 3.0 Multidimensional Fatigue Scale. The primary analysis will compare the exercise and control groups using an analysis of covariance (ANCOVA) model, with the intervention group, tumor entity, and center treated as fixed factors, and baseline CRF score included as a covariate. Additionally, pairwise comparisons between the exercise and control groups within each tumor stratum will be performed using two-sample t-tests on the change from baseline, derived from the ANCOVA model.

The primary analysis population will follow the intention-to-treat principle, meaning all randomized participants will be analyzed in their originally assigned groups, regardless of adherence, withdrawal, or protocol deviations occurring after randomization. A per-protocol population will also be defined, including all randomized participants who do not have major protocol violations. The primary hypothesis test will be conducted at a two-sided overall significance level of 5%.

A sensitivity analysis will be conducted on the perprotocol population to assess the robustness of the intervention effects on CRF, HRQoL, and exercise capacity. Missing data will be handled using multiple imputation methods, where appropriate. All variables will be summarized using descriptive statistics, and exploratory p-values will be reported.

Subgroup analyses by tumor entity, treatment intensity, cancer treatment and age group are planned. No interim analysis is planned for this trial.

Roles and responsibilities

The FORTEe project is coordinated by UMC-Mainz, which serves as the legal entity and intermediary between the consortium and the European Commission. The coordinating center is responsible for overseeing project implementation, chairing both the General Assembly (GA) and the Steering Committee, and acting as the primary communication link between all involved parties.

The Clinical Trial Management Committee— comprising MBBM, UMC-Mainz and UEM- plays a key role in coordinating and supervising the clinical trials.

The SC, consisting of all work package leaders, is responsible for the successful execution of the project in terms of schedule, budget, and scientific quality.

The GA serves as the highest decision-making body within the FORTEe consortium. It includes one voting representative from each project partner, as well as non-voting researchers involved in the project. The GA is responsible for making strategic decisions, particularly regarding changes to project scope, finances, and intellectual property rights.

The Scientific and Ethical Advisory Board (SEAB), comprising external experts, provides independent guidance to ensure scientific rigor and ethical integrity. SEAB supports project quality through annual GA meetings, progress reviews, and identification of emerging ethical issues.

Dissemination

A comprehensive dissemination and exploitation strategy including publication rules have been developed to ensure that FORTEe's findings are accessible and effectively communicated to key stakeholders, including the scientific, clinical, and public health communities, guideline committees, and the general public.

Discussion

Exercise oncology is not yet a standard component of care in pediatric oncology, despite evidence showing its positive effects on both psychosocial aspects and physical performance [24–32, 36, 58]. Children and adolescents who have the opportunity to participate in oncology exercise programs report that exercise therapy provides them with a means to actively contribute to their treatment. This active involvement can foster increased self-efficacy and self-esteem [59, 60]. To fully assess and evaluate the

Neu et al. BMC Cancer (2025) 25:1275 Page 9 of 12

benefits of exercise oncology, randomized controlled trials RCTs are essential. However, only a limited number of RCTs have been conducted on exercise interventions in pediatric oncology during active cancer treatment [25, 26, 32, 61–68]. Nevertheless, generalizable conclusions remain challenging due to small sample sizes and diverse study designs.

To advance and unify the emerging field of pediatric exercise oncology across European countries, the FORTEe project and trial bring together leading experts from seven European nations. This collaborative effort aims to expand the expertise in the field and develop specific exercise training and testing protocols, which will be implemented with the aid of digital technologies.

Strengths of the study design

The FORTEe trial will be one of the largest interventional studies in pediatric exercise oncology, with a planned sample size of 450 patients. This large sample size will increase the statistical power of the trial, allowing for more robust analyses of the effectiveness of the intervention in a diverse population of children, adolescents, and young adults undergoing cancer treatment. By enrolling participants from multiple centers across Europe, the trial aims to reflect a wide range of clinical practices and patient characteristics, which will contribute to the generalizability of the results. This diversity will help ensure that the findings are relevant across different healthcare systems and types of cancer treatment.

The FORTEe trial is a multicenter, randomized controlled design that incorporates both personalized and standardized elements of exercise therapy. One of the key strengths is the personalization of the exercise intervention, which adapts the dosage (type, intensity, duration) based on individual patient needs and treatment phases. This tailored approach aims to address the heterogeneity in patient responses to both cancer treatment and exercise. The inclusion of remote exercise supervision through digital platforms and telehealth solutions enhances the feasibility of the intervention, providing accessibility to patients across various clinical settings (e.g., inpatient, outpatient, and home settings).

Limitations and challenges

Despite its strengths, the trial does face several limitations. One of the primary challenges is blinding; due to the nature of the intervention (exercise), blinding of participants and personnel is not feasible, which could introduce bias in the reporting of subjective outcomes such as CRF and HRQoL. Additionally, while the use of remote tools enhances accessibility, it may also introduce variability in adherence and the quality of exercise execution, which could influence outcomes.

Another potential limitation is the diversity of treatment protocols across participating centers. Variations in cancer treatment regimens, such as chemotherapy intensity and duration, could affect patient response to the exercise intervention. However, this challenge is being addressed by standardizing exercise protocols and using a comprehensive functional assessment system to tailor exercise to individual patient needs.

Implications and future directions

Once completed, the FORTEe trial has the potential to provide robust evidence on the effects of exercise therapy. Subsequently, the aim is to implement pediatric exercise oncology as an evidence-based treatment option for all pediatric cancer patients, and ultimately to integrate it as a standard in clinical practice worldwide.

Abbreviations

CLB

AR Augmented reality

Centre de Lutte Contre le Cancer Leon Berard

CNS Central nervous system

CONSORT Consolidated Standards of Reporting Trials

CPET Cardiopulmonary exercise testing

CRF Cancer-related fatigue
GA General Assembly

GDPR General Data Protection Regulation HRQoL Health-related quality of life

INT Fondazione IRCCS Istituto Nazionale dei Tumori

MBBM Fondazione Monza e Brianza per II Bambino e La Sua Mamma PedsQL™ Pediatric Quality of Life Inventory™ Multidimensional Fatigue

Scale

RCT Randomized, controlled trial
SEAB Scientific and Ethical Advisory Board
SERC Serious Exercise-Related health Complication

SPIRIT Standard Protocol Items: Recommendations for Interventional

Trials

Supplementary Information

The online version contains supplementary material available at https://doi.or q/10.1186/s12885-025-14489-y.

Additional file 1. SPIRIT 2013 Checklist for the FORTEe Trial Protocol.

Additional file 2. Study design and timeline for the FORTE trial in accordance with SPIRIT 2013 guidelines.

Additional file 3. Recommendations for medical clearance/ reasons for adapting exercise.

Additional file 4. (Serious) Exercise-Related health Complications (SERCs).

Additional file 5. Inclusion and exclusion criteria of the FORTEe trial (Clinial Study Protocol, V1.4-2023/05/01).

Additional file 6. Supportive care services across trial sites.

Acknowledgements

We would like to thank all the members of the FORTEe consortium for their support of this article. We especially thank the following consortium partners for their contribution: Ameli Schwalber, Olivia Pérol and Hanne Bækgaard Larsen for funding acquisition, Tommaso Pietro Moriggi, William Zardo, Amandine Bertrand, Lena Wypyrsczyk, Mareike Kühn and Abigale Robinson for their input on methodological development, as well as Heidi Diel for reviewing and editing. We gratefully acknowledge the Central Data Management (Zentrales Datenmanagement, ZDM) team of the Society for Paediatric Oncology and Haematology (GPOH) at Hannover Medical School

Neu et al. BMC Cancer (2025) 25:1275 Page 10 of 12

for their expert support in customizing, hosting, and maintaining the MARVIN database.

Authors' contributions

Conceptualization: MAN, SS, JF Funding acquisition: JF, MAN, SS, FL, AB, PW, JW, AL, RM, MKF, FS, BK, LK, KR, TB, WB, MG, NWP Methodology: MAN, ED, FL, AB, PW, SW, JW, IE, AL, CF, RM, MKF, FS, BK, LK, KR, SS, MP, TB, WB, MG, CR, NWP, JF Project administration: JF, MAN, ED, BH, NWP, FL, PW, JW Supervision: JF, MAN, ED, FL, JW Visualization: MAN, ED Writing— original draft: MAN Writing—review and editing: MAN, ED, FL, AB, PW, SW, JW, IE, AL, CF, RM, MKF, FS, BK, LK, BH, MP, TB, WB, MG, KR, SS, CR, NWP, JF.

Funding

Open Access funding enabled and organized by Projekt DEAL. Open Access funding enabled and organized by Projekt DEAL. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 945153. This publication reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein. Fondazione Maria Letizia Verga provided partial financial support for the contribution of Francesca Lanfranconi.

Data availability

No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate

The FORTEe study was approved by the Ethics Committee of the Rhineland-Palatinate Chamber of Physicians (application number 2021–15904) on August 4, 2021, with additional approvals from local ethics committees where applicable. Written informed consent was obtained from all participants (or their legal guardians for minors), with documented assent collected from children aged six years and above where possible.

Consent for publication

Not applicable.

Competing interests

Author M. Polak is affiliated with Nurogames GmbH, which developed and provided the "FORTEe— Get strong" mobile app in the intervention. Author T. Baader is affiliated with Pixformance Sports GmbH, which developed and provided the digital training device (the Pixformance station) used in the intervention. Authors from these companies are not intended to be involved in the data analysis and interpretation mentioned above. The remaining authors declare that they have no competing interests.

Author details

¹Childhood Cancer Center Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany ²Centro Maria Letizia Verga, Fondazione Monza E Brianza Per II Bambino E La Sua Mamma, Monza 20900, Italy

³Pediatric Department, Fondazione IRCCS San Gerardo dei Tintori and School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy

⁴Department of Sport and Health Science and Social Work, Oxford Brookes University, Oxford OX3 0BP, UK

⁵Department of Medical Oncology, Working Group Exercise Oncology, Heidelberg University Hospital and National Center for Tumor Diseases, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg 69120, Germany

⁶Department of Sports Sciences, Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Madrid 28670, Spain

⁷Hospital 12 de Octubre Research Institute ("imas12"), Physical Activity and Health Laboratory, Madrid 28041, Spain

⁸Prevention Cancer Environment Department, Centre de Lutte Contre le Cancer Léon Bérard, Lyon 69373, France

⁹Department of Pediatrics and Adolescent Medicine, University Hospital Copenhagen, Rigshospitalet, Copenhagen 2100, Denmark

 $^{10}\mbox{Pediatric}$ Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan 20133, Italy

¹¹Forma 3D Ltd., Ljubljana 1000, Slovenia

¹²Division of Pediatrics, Department of Haematooncology, University Medical Center Ljubljana, Ljubljana 1000, Slovenia

¹³concentris research management gmbh, Fürstenfeldbruck 82256, Germany

¹⁴Nurogames GmbH, 50676 Cologne, Germany

¹⁵Pixformance Sports GmbH, Dallgow-Döberitz 14624, Germany
 ¹⁶Department of Molecular and Cellular Sport Medicine at the Institute of Cardiology and Sports Medicine, German Sport University Cologne,

Cologne 50933, Germany

¹⁷University Hospital Essen, West German Cancer Center, Essen
45122, Germany

¹⁸Youth Cancer Europe, Cluj-Napoca 400 372, Romania

¹⁹University Medical Center of the Johannes Gutenberg-University Mainz, Interdisciplinary Centre for clinical Studies (IZKS), Mainz 55131, Germany ²⁰University Medical Center of the Johannes Gutenberg-University Mainz, Institute for the History, Philosophy and Ethics of Medicine, Mainz 55131, Germany

Received: 28 May 2025 / Accepted: 10 June 2025 Published online: 07 August 2025

References

- Kyu HH, Stein CE, Boschi Pinto C, Rakovac I, Weber MW, DannemannPurnat T, et al. Causes of death among children aged 5–14 years in the WHO European Region: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Child Adolesc Health. 2018;2(5):321–37.
- Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al. International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol. 2017;18(6):719–31.
- Erdmann F, Frederiksen LE, Bonaventure A, Mader L, Hasle H, Robison LL, et al. Childhood cancer: Survival, treatment modalities, late effects and improvements over time. Cancer Epidemiol. 2021;71(Pt B):101733.
- Vassal G, Schrappe M, Pritchard-Jones K, Arnold F, Basset L, Biondi A, et al. The SIOPE strategic plan: a European cancer plan for children and adolescents. J Cancer Policy. 2016;8:17–32.
- Erdmann F, Kaatsch P, Grabow D, C S. German Childhood Cancer Registry -Annual Report 2019 (1980–2018). Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) at the University Medical Center of the Johannes Gutenberg University Mainz; 2020.
- Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, et al. Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5–a populationbased study. Lancet Oncol. 2014;15(1):35–47.
- Faber J, Wingerter A, Neu MA, Henninger N, Eckerle S, Munzel T, et al. Burden of cardiovascular risk factors and cardiovascular disease in child-hood cancer survivors: data from the German CVSS-study. Eur Heart J. 2018;39(17):1555–62.
- Hudson MM, Bhatia S, Casillas J, Landier W. Long-term follow-up care for childhood, adolescent, and young adult cancer survivors. Pediatrics. 2021. htt ps://doi.org/10.1542/peds.2021-053127.
- Gotte M, Kesting S, Winter C, Rosenbaum D, Boos J. Comparison of selfreported physical activity in children and adolescents before and during cancer treatment. Pediatr Blood Cancer. 2014;61(6):1023–8.
- Winter C, Muller C, Brandes M, Brinkmann A, Hoffmann C, Hardes J, et al. Level of activity in children undergoing cancer treatment. Pediatr Blood Cancer. 2009;53(3):438–43.
- Stout NL, Baima J, Swisher AK, Winters-Stone KM, Welsh J. A systematic review of exercise systematic reviews in the cancer literature (2005–2017). PM&R. 2017;9(9S2):S347–84.
- Oberoi S, Robinson PD, Cataudella D, Culos-Reed SN, Davis H, Duong N, et al. Physical activity reduces fatigue in patients with cancer and hematopoietic stem cell transplant recipients: a systematic review and meta-analysis of randomized trials. Crit Rev Oncol Hematol. 2018;122:52–9.
- Bower JE. Cancer-related fatigue—mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014;11(10):597–609.
- Patel P, Robinson PD, van der Torre P, Tomlinson D, Seelisch J, Oberoi S, et al. Guideline for the management of fatigue in children and adolescents with cancer or pediatric hematopoietic cell transplant recipients: 2023 update. EClinicalMedicine. 2023;63:102147.

Neu et al. BMC Cancer (2025) 25:1275 Page 11 of 12

- 15. Tomlinson D, Diorio C, Beyene J, Sung L. Effect of exercise on cancer-related fatigue: a meta-analysis. Am J Phys Med Rehabil. 2014;93(8):675–86.
- Van Dijk-Lokkart EM, Steur LMH, Braam KI, Veening MA, Huisman J, Takken T, et al. Longitudinal development of cancer-related fatigue and physical activity in childhood cancer patients. Pediatr Blood Cancer. 2019. https://doi.org/1 0.1002/pbc.27949.
- Kuehn M, Wypyrsczyk L, Stoessel S, Neu MA, Ploch L, Dreismickenbecker E, et al. Physical activity as a treatment for cancer-related fatigue in children, adolescents and young adults: a systematic review. Children (Basel). 2023. htt ps://doi.org/10.3390/children10030572.
- Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL, Courneya KS, et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 2019;51(11):2375–90.
- Ramirez-Velez R, Izquierdo M. Editorial: Precision physical activity and exercise prescriptions for disease prevention: the effect of interindividual variability under different training approaches. Front Physiol. 2019;10:646.
- 20. Medicine Io. In: Evans CH, Jr., Ildstad ST, editors. Small Clinical Trials: Issues and Challenges. Washington (DC)2001.
- Latoch E, Zubowska M, Mlynarski W, Stachowicz-Stencel T, Stefanowicz J, Slawinska D, et al. Late effects of childhood cancer treatment in long-term survivors diagnosed before the age of 3 years - a multicenter, nationwide study. Cancer Epidemiol. 2022;80:102209.
- Foster M, Blamires J. Child and family centred care. J Pediatr Nurs. 2023;71:A8–9.
- Pinxten W, Dierickx K, Nys H. Ethical principles and legal requirements for pediatric research in the EU: an analysis of the European normative and legal framework surrounding pediatric clinical trials. Eur J Pediatr. 2009;168(10):1225–34.
- Morales JS, Santana-Sosa E, Santos-Lozano A, Bano-Rodrigo A, Valenzuela PL, Rincon-Castanedo C, et al. Inhospital exercise benefits in childhood cancer: a prospective cohort study. Scand J Med Sci Sports. 2020;30(1):126–34.
- Fiuza-Luces C, Padilla JR, Valentin J, Santana-Sosa E, Santos-Lozano A, Sanchis-Gomar F, et al. Effects of exercise on the immune function of pediatric patients with solid tumors: insights from the PAPEC randomized trial. Am J Phys Med Rehabil. 2017;96(11):831–7.
- Fiuza-Luces C, Padilla JR, Soares-Miranda L, Santana-Sosa E, Quiroga JV, Santos-Lozano A, et al. Exercise intervention in pediatric patients with solid tumors: the physical activity in pediatric cancer trial. Med Sci Sports Exerc. 2017;49(2):223–30.
- Hogarty AN, Leahey A, Zhao H, Hogarty MD, Bunin N, Cnaan A, et al. Longitudinal evaluation of cardiopulmonary performance during exercise after bone marrow transplantation in children. J Pediatr. 2000;136(3):311–7.
- Jarvela LS, Niinikoski H, Lahteenmaki PM, Heinonen OJ, Kapanen J, Arola M, et al. Physical activity and fitness in adolescent and young adult long-term survivors of childhood acute lymphoblastic leukaemia. J Cancer Surviv. 2010;4(4):339–45.
- Marchese VG, Chiarello LA, Lange BJ. Effects of physical therapy intervention for children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;42(2):127–33.
- 30. Perondi MB, Gualano B, Artioli GG, de Salles PV, Filho VO, Netto G, et al. Effects of a combined aerobic and strength training program in youth patients with acute lymphoblastic leukemia. J Sports Sci Med. 2012;11(3):387–92.
- Chamorro-Vina C, Ruiz JR, Santana-Sosa E, Gonzalez Vicent M, Madero L, Perez M, et al. Exercise during hematopoietic stem cell transplant hospitalization in children. Med Sci Sports Exerc. 2010;42(6):1045–53.
- Senn-Malashonak A, Wallek S, Schmidt K, Rosenhagen A, Vogt L, Bader P, et al. Psychophysical effects of an exercise therapy during pediatric stem cell transplantation: a randomized controlled trial. Bone Marrow Transplant. 2019;54(11):1827–35.
- Schmidt-Andersen P, Pouplier A, Faigenbaum AD, Beth CK, Olsen CC, Lykkedegn S, et al. Evaluating feasibility of an exercise intervention including physical assessment during the first 6 months of cancer treatment in children and adolescents in a randomized controlled trial. Pediatr Blood Cancer. 2025;72(3):e31498.
- Lam KKW, Li WHC, Chung OK, Ho KY, Chiu SY, Lam HS, et al. An integrated experiential training programme with coaching to promote physical activity, and reduce fatigue among children with cancer: a randomised controlled trial. Patient Educ Couns. 2018;101(11):1947–56.
- 35. Lanfranconi F, Zardo W, Moriggi T, Villa E, Radaelli G, Radaelli S, et al. Precision-based exercise as a new therapeutic option for children and adolescents with haematological malignancies. Sci Rep. 2020;10(1):12892.

- Stössel S, Neu MA, Wingerter A, Bloch W, Zimmer P, Paret C, et al. Benefits of exercise training for children and adolescents undergoing cancer treatment: results from the randomized controlled MUCKI trial. Front Pediatr. 2020;8:243.
- Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJ. Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;3:CD008796.
- Baumann FT, Bloch W, Beulertz J. Clinical exercise interventions in pediatric oncology: a systematic review. Pediatr Res. 2013;74(4):366–74.
- Morales JS, Valenzuela PL, Rincon-Castanedo C, Takken T, Fiuza-Luces C, Santos-Lozano A, et al. Exercise training in childhood cancer: a systematic review and meta-analysis of randomized controlled trials. Cancer Treat Rev. 2018;70:154–67.
- Varni JW, Burwinkle TM, Katz ER, Meeske K, Dickinson P. The PedsQL in pediatric cancer: reliability and validity of the pediatric quality of life inventory generic core scales, multidimensional fatigue scale, and cancer module. Cancer. 2002:94(7):2090–106.
- Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7.
- 42. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International classification of childhood cancer, third edition. Cancer. 2005;103(7):1457–67.
- 43. Kazak AE, Hocking MC, Ittenbach RF, Meadows AT, Hobbie W, DeRosa BW, et al. A revision of the intensity of treatment rating scale: classifying the intensity of pediatric cancer treatment. Pediatr Blood Cancer. 2012;59(1):96–9.
- Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332.
- Borg G, Linderholm H. Perceived exertion and pulse rate during graded exercise in various age groups. J Intern Med (Acta Medica Scandinavica). 1967;5472:194–206.
- Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–6.
- 47. Faigenbaum AD, Westcott WL, Loud RL, Long C. The effects of different resistance training protocols on muscular strength and endurance development in children. Pediatrics. 1999;104(1): e5.
- Varni JW, Seid M, Kurtin PS. PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med Care. 2001;39(8):800–12.
- Varni JW, Seid M, Rode CA. The PedsQL: measurement model for the pediatric quality of life inventory. Med Care. 1999;37(2):126–39.
- Smith BW, Dalen J, Wiggins K, Tooley E, Christopher P, Bernard J. The brief resilience scale: assessing the ability to bounce back. Int J Behav Med. 2008;15(3):194–200.
- 51. Jefferies P, McGarrigle L, Ungar M. The CYRM-R: A Rasch-Validated Revision of the Child and Youth Resilience Measure. J Evid Based Soc Work. 2019;2018:1–23.
- Schwarzer R, Jerusalem M, Weinman J, Wright S, Johnston M. Generalized Self-Efficacy Scale. Measures in health psychology: A users portfolio Causal control beliefs. 1995.
- 53. Schwarzer R, Renner B. Health-specific self-efficacy scales. 2009.
- Topp CW, Østergaard SD, Søndergaard S, Bech P. The WHO-5 well-being index: a systematic review of the literature. Psychother Psychosom. 2015;84(3):167–76.
- Tennant R, Hiller L, Fishwick R, Platt S, Joseph S, Weich S, et al. The Warwick-Edinburgh Mental Well-being Scale (WEMWBS): development and UK validation. Health Qual Life Outcomes. 2007;5:63.
- InterAct-Consortium, Peters T, Brage S, Westgate K, Franks PW, Gradmark A, et al. Validity of a short questionnaire to assess physical activity in 10 European countries. Eur J Epidemiol. 2012;27(1):15–25.
- Zardo W, Villa E, Corti E, Moriggi T, Radaelli G, Ferri A, et al. The impact of a precision-based exercise intervention in childhood hematological malignancies evaluated by an adapted Yo-Yo intermittent recovery test. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14051187.
- 58. San Juan AF, Fleck SJ, Chamorro-Vina C, Mate-Munoz JL, Moral S, Perez M, et al. Effects of an intrahospital exercise program intervention for children with leukemia. Med Sci Sports Exerc. 2007;39(1):13–21.
- Rodriguez-Solana A, Gracia-Marco L, Cadenas-Sanchez C, Redondo-Tebar A, Marmol-Perez A, Gil-Cosano JJ, et al. The effects of physical activity interventions on self-esteem during and after cancer treatment: a systematic review and meta-analysis. Sci Rep. 2024;14(1):26849.
- Yelton L, Forbis S. Influences and barriers on physical activity in pediatric oncology patients. Front Pediatr. 2016;4:131.

Neu et al. BMC Cancer (2025) 25:1275 Page 12 of 12

- Cox CL, Zhu L, Kaste SC, Srivastava K, Barnes L, Nathan PC, et al. Modifying bone mineral density, physical function, and quality of life in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2017. https://doi.org/10. 1002/pbc.26929.
- 62. Khodashenas E, Badiee Z, Sohrabi M, Ghassemi A, Hosseinzade V. The effect of an aerobic exercise program on the quality of life in children with cancer. Turk J Pediatr. 2017;59(6):678–83.
- Hartman A, te Winkel ML, van Beek RD, de Muinck Keizer-Schrama SM, Kemper HC, Hop WC, et al. A randomized trial investigating an exercise program to prevent reduction of bone mineral density and impairment of motor performance during treatment for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;53(1):64–71.
- Hinds PS, Hockenberry M, Rai SN, Zhang L, Razzouk BI, Cremer L, et al. Clinical field testing of an enhanced-activity intervention in hospitalized children with cancer. J Pain Symptom Manage. 2007;33(6):686–97.
- Braam KI, van Dijk-Lokkart EM, Kaspers GJL, Takken T, Huisman J, Buffart LM, et al. Effects of a combined physical and psychosocial training for children with cancer: a randomized controlled trial. BMC Cancer. 2018;18(1):1289.

- Saultier P, Vallet C, Sotteau F, Hamidou Z, Gentet JC, Barlogis V, et al. A randomized trial of physical activity in children and adolescents with cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13010121.
- Smith C, Farhat R, Fern-Buneo A, Purrington H, Cobb E, Matson L, et al. Effects of an exercise program during pediatric stem cell transplantation: a randomized controlled trial. Pediatr Blood Cancer. 2022;69(5):e29618.
- 68. Wallek S, Senn-Malashonak A, Vogt L, Schmidt K, Bader P, Banzer W. Impact of the initial fitness level on the effects of a structured exercise therapy during pediatric stem cell transplantation. Pediatr Blood Cancer. 2018. https://doi.org/10.1002/pbc.26851.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.